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A REVIEW OF
DYNAMIC RESPONSE OF COMPOSITES

INTRODUCT LON

The dynamic¢ response of a composite has peen a hotly pursued
research subject since the middle of nineteen sixties. It is a subject
which has wide technological applications and also possesses challenging
theoretical and experimental problems. Vast literatures are now avail-
able on the subject. Various theories have been proposed to predict the
dynamic response ot a composite. The ultimate goal of research in this
area is to obtain an approximate theory which is reasonably simple and,
at the same time, is able to predict fairly accurately the response of a
composite structure subject to a dynamic loading. Despite the voluminous
research papers published, this goal does not seem to have been achieved.
This i1s not a reflection on the lack of research ability in the area.
Quite the contrary, there are several sophisticated theories which are
able to predict accurately certain aspects of the dynamic response of a
composite. This is a reflection on the difficulty of analyzing a com-
posite material. One can have an exact or nearly exact theory which is
cither mathematically intractable or practically unfeasible. On the other
hand, one can have a very simple approximate theory which is too crude to
predict even the simplest dynamic response of a composite.

The purpose of this project was to critically review the state of
the art on the subject of the dynamic response of composites and to suggest
possible future rescarch dirvections. As we embarked on the project, it

soon became clear that the task was a much more difficult one than we
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have anticipated. The more than three hundred papers compiled at the end
of this report by no means exhaust all papers in the area. Papers which
deal with the static response of a composite are not included in the
references. A review of the more than three hundred papers reveals that
most papers discuss either harmonic waves or transient waves. Of course,
there are papers which discuss both harmonic and transient waves. When
the material is linear, harmonic waves can be superimposed to obtain a
transient wave. This approach is not applicable for nonlinear materials.
Therefore, papers which discuss harmonic waves invariably assume that the
material s [incar,

Pablished papers on plates and shells which are made of composite
materials were also reviewed. Although  the reviecw of these papers is not
presented here, the papers are included in the Refererces at the cond of
this report. Likewise, review of papers which model composites as fluids
is not presented but they arce included in the References.

In Chapter 1, we brietfly review the existing theories of the dynamic
response of a composite.  This is followed by a review in Chapter 11 of

papers which deal with harmonic waves in composites. Transient waves in

composites are discussed in Chapter 111,  Although the original objectives

of this project do not include reviewing the experimental results, we felt
that some experimental results are of sufficient interest and are relevant
to the theoretical predictions that a few words should be said about them.
This is contained in Chapter IV. Finally, in Chapter V we comment on the
ditftferences between various theories and also suggest possible future

rescdarch directions,




[. A SUMMARY OF THE EXISTING THEORIES

For most realistic structural composites, an exact description of the
static or dynamic behavior is mathematically impracticable. As an alterna-
tive, a number of investigators have sought approximate theories. The

representatives of such theories are briefly described as follows:

B3 Effecgggigggulus Theories

The effective modulus theories such as those proposed by Postma [ P6 ]
and White and Angona [W11] replace the actual composite by a homogeneous,
generally anisotropic medium whose material constants are a geometrically
weighted average of the properties of the constituents. If C;ikl are such
effective moduli of the composite, this theory relates volume averages of
stresses to volume averages of strains by a general anisotropic linear

tress-strain relation of the form

Vg
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Of course, the constants C are expressions in terms of the material

*
ke

constants of the constituents and the parameters defining the geometric

layout of the composite. The constants C;jkl satisfy the relations
o L NS R S (2)
ijke jike ijik kLij i
Thus, of the 81 constants C;jkl' only 21 are independent. In general, the

number of independent elastic constants is much less than 21 because of the
existence of symmetries in the structuring of the material. In particular,
in the case of a laminated medium consisting of alternating layers of two

isotropic elastic materials, the number of independent elastic constants

reduces to only S.




1.2 Q{fgg}jygmﬁjj}jquSi;thqyics

in a servies of papers [S18,A9,G610,G11,A10] by Achenbach, Grot, Herrmann

While vielding satistactory results tor certain geometries under

for virtually all geometries when applied to wave propagation.

aobserved in composites.  Such effects become important where dominant

with discontinuous material properties, any continuum theory must in one

way or another take into account the influence of microstructure.

tollowing theories were developed with this purpose in mind.

The etfective stiftfness theory was the first continuum model for

dynamic effect such as geometric dispersion and hence to reflect the in-

static loads, the ettfective modulus theories exhibit serious deficiencies
Specifically,

these theories are incapable of reproducing the dispersion and attenuation

signal wave lengths are of the order of the typical camposite microdimen-

sion. Since dispersion and attenuation are results of the microstructure

lLaminated media and tiber-reintforced composites to account for a typically

tluence of the micrvostructure of a composite. The theories were developed

and Sun. Higher ovder theorvies of this kind were dervived by Turhan |[T15].

The theories have been formulated in several different

the case of the lincarly clastic Laminated composites
one.  Here we outline  the theory of clastic waves in
[S18] bricetlv.  The rveintorcing and matrvix lavers are

homogeneous, linear isotropic clastic materials.  For

ts perhaps a typieal

Laminated composites

hoth assumed to be

clastic waves propa

Qating in the composites, this theory approximates the displacements of the

reintorced laver and the matrix laver in the kth ce
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where uik and uTk denote the displacements of the reinforcing and matrix
layers respectively, ugf and u:: denote the displacements at the mid-
planes of the two corresponding layers, ig and ig are local coordinates
measured from the corresponding midplanes, wgt and w§§ represent anti-
symmetric thickness shear deformations, and wgg represents symmetric
stretch deformation of the kth reinforcing layer. Similar definitions
apply for wgﬁ, wg; and wg;. The approximate theory allows dynamic

interaction of the layers through the continuity of displacements at the

interfaces. This is obtained from Eq. (3) as

fk fk

m
0i 2%y X3at)

K mk
uoi(xl,x2 ,xs,t) - u

(4)
mk

fk
2 )xs’t)

o Fle 2 1 mk
= 70 oy (X)X sxg,t) * 3 d U, (XX
With the assumption of the displacement fields given by Eq. (3), one can
5 e . : fk wmk
obtain the strain, and consequently the elastic strain energy W and
in the kth reinforcing layer and the matrix layer, respectively. One also
3 v : Lfk ka " : - :
obtains the kinetic energy 1 and . Now, if the composite consists
of n reinforcing layers and n matrix layers within a certain thickness %,

the total strain energy wz and kinetic energy Tl are

n
W, = § Wtk wmKy (5)

£

n
I otk PN (6)

-3
n

The basic assumption in the effective stiffness theory is the smooth opera-

tion in which wl is expressed in terms of wf and W" by

~ 1 £
W = I d——T-J— (W + Wm) LIXZ (7)
9 { m

where wf and W' are now defined for all Xse If the layering thicknesses

e
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are small, W’ and W' are approximately equal to Wtk and wmk within

each layer. Therefore, the strain energy density W can be defined as

W= xs’“k)/(dt. $d) (8)

=3 Wk "
where htk and W are assumed to hold for all «x and

not just xtk

e

mk e g : : : ! :
%, . Similar smoothing operation is applied to the kinetic energy. By

assuming the smallness in the layer thicknesses, Eq. (4) can be approximated
by a differential form:
5. # b O, e o X o)
(\t Y _‘I‘l 2

1 - d

(9)

Finally, one invokes Hamilton's principle in which the continuity conditions
(9) are included by using the Lagrangian multipliers \i:
t\

§ (T -W -XlSl - A, -XSSS)JV dt = 0 (10)

-

This results in a system of partial differential equations tor the displace-
ment s uni and w:i'

Sun, Achenbach and Herrmann [S18] then used these displacement equations
to study the propagation of plane harmonic waves in a laminutcd‘mcdium. Dis-
persion relations for harmonic waves propagating parallel to and normal to
the direction of the layering were presented, and the approximate dispersion
curves were compared with exact curves. The limiting phase velocities at
vanishing wave members agree with the exact limits. The lowest antisymmetric
mode tor waves propagating in the direction of the layering shows the

strongest dispersion which is very adequately described by this theory over




a substantial range of wave numbers. Various theories of effective stiff-

ness will be reviewed later.

[.3 Mixture Theories

Another approach, suggested by Lempriere [L7]), is to use the mixture
theories as models of the dynamics of composites. The fundamental concept
of mixture was postulated by Truesdell and Toupin [T12], and further
developed by Green and Naghdi [G5,G7,G8], Green and Steel [Go], Steel [S14],
and others. In these theories, the constituents of the structural composite
are superimposed in space and allowed to undergo individual deformations.
The microstructure of the composite is then simulated by specifying the
nature of constituent interactions and the form of the mixture constitutive
relations.

While general conservation laws governing the mixture may easily be
formulated, the practical application to composite materials encounters
difficulties in that it is rather difficult to analytically specify the
interactions between the constitutents on the basis of the knowledge of
the geometry and constitutive relations of the individual constituents.

In 1971, Bedford and Stern [Bl1] first proposed a mixture theory for a
laminated composite wherein the interaction parameters were determined on
the basis of results of certain simple quasi-static problems. Then, in a
series of papers by Bedford and Stern [S15,516,B13], Hegemier and Nayfch
[H7], and Hegemier, Gurtman and Nayfeh [H8], mixture theories were formu-
lated for certain laminated and fiber-reinforced composites with varying
degrees of success. In the following, we outline the binary mixture theory
for wave guide-type propagation in laminated and unidirectional fibrous

composites formulated by Hegemier, Gurtman and Nayfeh in [H8] .

- e g e - ———————
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For a periodic arvvay of lineavly elastic, isotvopic and homogencous
bi-laminates, bonded at their intertaces, these authors tirst integrated
the elastadvanamie equations of motion and constitutive relations tor each
constituent over the thickness ot cach constituent and detfined averaged
stresses and displacements over that thickness. By using the condition
that L. must be continuous across intevtaces, they obtained the momentum
equations in the torm |

) 420 AT
)nlll\ ] ~"“il” -t

NN 1
£11) {
’ Jp (Pl o (20 |
3 o 2 "‘\ L\‘u\\ » P
(RN a s
tnowhich the supeescripts or subscripts 1 oand 2 refer to 1 and 2 constituents }
¥

respectively, the supeescript  a veters to average value, and "partial"

stresses and densities ave detined as

where |
Ny ha,(h‘ t h:) ; o Ly (La)
tsoa volume traction of the x-constituent, and “‘ ts one halt ot the thick

ness of the c-constituent.  In (L), P ois an "interaction” term vetlecting
momentum transter trom one constituent to another via shear interaction

across laminate intevtaces. By a vational analvsis, Hepemievr, ete., tound

the intevaction term  Potaking the torm

' \ ¢ 2
i N u‘l‘) u\ \‘> (1)
\hl ¥ N 1t \ \
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Similarly, integration of the consitutive relations for the individual con-
stituents followed by a rational analysis, Hegemier, etc., found the

constitutive relations for the mixture as follows:

ciP) , o o028 | . 5 ., (20)

" | b 12
(106)
g 3.
D S T L R L
XX 12 X X 22 XX
where .
T Pl L
“ae Mo E/* Y8 " E
(17)
(oeyB i B 25 ol )
in which
s )
Ey U\nu)“ (18)

and A“ P uq are Lamé constants of the a-constituent.

For fibrous composites, Hegemier, etc., approximated a hexagonal array
of fibers by concentric, linear elastic cylinders, with perfect interface
bonds and subject to vanishing shear stress and radial displacement on the
outer boundaries so that for a cylindrical element, o =1 (r < ) denotes
fiber and a = 2 (rl SE S rz) denotes matrix. They found that the

momentum equations for fibrous composites can be also written in the form

(11) where, for this case,

Sn |,
e o (2a) (la)
P 2 — S TP, & 9
7 e i T )
iy =7, " "1%9
2 1
in which
3
PO i L R
ryt*r, I -rl 4
d 5 Fe iz (20)
1 re - re
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They also found that the constitutive relations of the mixture still take
the form (16) where

: = (A + 312;)|n! - A[‘/l). €8 = X(XX[{/I‘. (x#R)

A o + "'”7
nyo j Ry 2 ¥ IRy Ve, |

Compartson of exact and approximate phase velocity data for laminated and
fibrous composites indicate that the theories just described provide good

agreement for wavelengths greater than the typical composite microdimension.

.4 Continuum Theories Based on Asymptotic Expansions
For laminates and directionally reinforced fibrous composites, con-
siderable success has been achieved in the development ot continuum models
based upon asvmptotic expansion techniques in which the ratio of the
characteristic lengths of the structuring to the wavelengths is assumed
muach smaller than unity.  One approach, utilizing direct asymptotic expan-
sions, has been proposed by Ben-Amoz [B22,B23] and is appropriate for
problems of the wave-puide type.  Another technique, utilizing spatial
and asymptotic expansions, has been proposed by Hegemier and developed in
a series of papers by Hegemier and Nayteh [H7], Hegemier, Gurtman and
Navfeh [H8], Hegemier and Bache [HY,B1,H10], and Gurtman, etc. |G13]. The
latter applied to problems of both the wave-puide and wave-reflect types.
The technique developed by llegemier, ot al., models a heterogeneous
composite as a continuum with microstructure.  In this theory, the govern
ihg mﬁhninns.nl‘cnmpthﬂ) determined trom a knowledge of the geometry
and constitutive relations of the composite microcomponents. In addition,
this theory provides intformation on stress and displacement ticelds wi\“in
the microcomponents of the composite. A typical example is the elastic

waves in laminated composites.  We will briefly present the case of wave

propagation normal to the laminate in the following.
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For an elastic bilaminate, let h(l) and h(z) be the half thickness
of the layers and y be the distance perpendicular to the layering.
Hegemier, et al. |[H7] started from the equations of motion and constitu-
tive relations for the individual layers and expanded the stress and dis-
placement into power series of the local coordinates with origin at the
centroid of the constituent layer. By imposing the continuity conditions
of the stress and displacement across the layer interface, they obtained
the equations in a difterential-difference form. Finally, assuming that
all difference expressions admit Taylor series expansions in the quantity
A= h(l) + h(:). which is the half thickness of a unit cell, they converted
the difterential-ditference equations to partial differential equations.
After some algebraic and trigonometric manipulations, the two partial

differential equations are shown to satisfy the tollowing global differen-

tial equation tor ¢ and Y which are essentially the stress and the strain:

) 2
{cosm:y“’ 3 )eosh(2y'?) ¢ 3) « L5 sinh2y ) €9 )sinn(2y¥ ca)
1 1 2K T T
Yy
- ¢cosh(2 e )}{®}= Q o
sh(2 € 9, ¥
where
E = y/L, T = ct/L, € = AR
(23)
> bl
ym\ - ch(a\/“(all\). % p(-)c(‘-)/p(l)c(l)
In Eq. (23), 2 is a reference length, c(“) and p(“‘ are the wave speed

and mass density of the ath laver, and ¢ is the wave speed of the com-

posite when € = 0. In the limiting case € = 0, Eq. (22) reduces to

a2 1)? 2)2 1?2 _(1 2 ) )
{52 - (97 @0 1O Dyak {3} - o @b

and hence ¢ is obtained by letting the coefficient of 3{ to be unity:




2 >y 2 2 -
0D L ) LN LTS W R )

b e =1 .

Y = Y (25)

- . ) o - . - \ .
Equation (22), when expands in powers of €, can be written as, after making

use of Eq. (25),

)

Py 0 lah 2
{(l ta,e s + a,€ 3& + ...)85

E cd
(26)
: 242 hyh 2 4>} b
L *hlt at 5 hJL al * "')al}{‘¥ .
where
a, = 2%/41 , 8, = 2°/6!
2 1 2)2 2 2)2.2
1>,=§-(y() '\(‘\~-§t\'(” _Y())
ey 3 (27)

af (3% @2 )? 2)2 . 2)®
big» It's["( Sl VA AR BN VLSS AR )]

This was obtained by Hegemier, et al., [H7]. However, h4 obtained here is

difterent trom that ot [HII], and it scems that hl of |HI1) is in error.

One could have obtained a general expression for the coefficients a,

and h,“ of £q. (27) if one rewrites Eq. (22) in the following form:

{ 0 cosh(2y ed ) - (0 -1)cosh(28 €d ) - cosh(2 ED_)} {¢)} =0 (28)
1 { {3 Y

where

1 2 2
yax? ey, =yt 4

: (29)
vo8 = (1+Kk)2/4k

Noticing that Eq. (25) can be written in the tform

0 yd - (0-1)§7= 1 (30)

Equation (28) reduces to




2 2
{cosh(z €d) - [:2!—:—-3—7 cosh(2 ¢ Y3 ) - Y‘—;—{‘-; cosh(2 ¢ 531)] } {3 } ‘9 0O

Expansion of each term in powers of ¢ leads to

‘s 7 s o 2 i
E ~£:2:l andn a2 “gf"‘l (1-87)y (n‘l)-gl-yz)ﬁ (nf}l..zn 5o |52 '
n=0 ()T © & g el 1 f

(2n+2)! Y2 . &2
{:‘} = 0 (32 |

Therefore,

yentl
a, = — -
<N 3 Y !
(2n+2)! (33)
yen+l 2,.2(n+1) 24 c2(n+1)
B, 5 £ 201005 Al 4 1% 1 1 o
B (oeed) | v - &2
It can be shown that Eq. (33) reproduces Eq. (27) for n = 1 and 2.
By letting
¢ 2
{W} ={$} oqx[ﬂ(ﬁ-%s)] (34)

where cp and Kk are the nondimensional phase velocity and wave number,
Eq. (22) reduces to the exact frequency equation obtained by Rytov |R13].
On the other hand, it we substitute Eq. (34) into Eq. (20), then one obtains
various approximate frequency equations depending on how many terms in

’ 2N
Eq. (20) are retained. 1t we keep all terms up to ¢, we may call the
approximation Nth order theory. Hegemier [H11] used a different defini-
tion for the order of approximation. For the Nth order theory, he used
. N INeL X :
Eq. (22) and kept the terms ¢ and € in the power series expansion
of cosh( )} and sinh( ). With this definition, the first ovder theory
(N = 1) would include not only the ¢’ terms, but also some (not all) temms

of €" and % Numerical examples show that his first order theory yields

better accuracy than several existing theories of the same orvder.




14

It should be mentioned that the binary mixture theory of Hegemier,
e

t al., outlined in Section [.3 can be obtained from a modified first order
o
theory of Hegemieor.

[.§ Variational _Methods

For harmonic waves in a composite with a periodic structure, a varia-
tion approach may be employed. This can particularly become a very effective
tool, if one uses a variation statement in which not only the displacement,
but also the stress tield is given independent variation. Morcover, by
permitting discontinuity in the displacement and the stress test functions,

one can expect a more accurate reproduction of the local variation in the
displacement and stress fields within and across the constituent materials.

Examples of such calculations can be found in a paper by Kohn, ot al. [KS5],
where the theorem of stationavy potential energy which leads to the Ravleigh
quotient for the cigen-trequency is used, and in a thesis by Wheeler |[WL0},

and in another thesis by Wu [WI7]. Nemat-Nasser [N12] developed more gencral

variation principles in which the displacement, the stress, and the strain
in one case, and the displacement and the stress in another case, are given

independent variations and which include appropriate general boundary and
discontinuity conditions. Here we illustrate Nemat-Nasser's variation
principles by using the one-dimensional case as follows.,

For waves propagating in an clastic medium whose properties vary
periodically in the direction of propagation, i.e., the x-direction, let

a be the periodicity-length. Then one has

p(x+a)

"

X))

n(x+a) = n(x)




where n stands for A+2u when dilational waves are considered, and for
u when shear waves are considered. Consider harmonic waves propagating
normal to the layers of a composite consisting of periodically elastic A
layers bonded together. Assume that a typical cell in this composite con-
sists of two materials, MB, 8=1,2, where m! occupies the region

a
-a/2 sx s -b/2 and b/2 < x £ a/2, and M" occupies the region

s

- b/2 < x £b/2. Now consider the functional i
a/2
| 1 2 1
‘ J1 = { = Doo* + % pw uu* - ‘ﬁ\ + c.c.} dx

-a/2 (30)

, {X[u*(%) -ur (- )C-iq;l]} *<6<u*>}x=0b/2 +c.c.

in which the superscript star denotes the complex conjugate, the temm c.c.

aa
rol %

stands for the complex conjugate of quantities which precede it, X is the

Lagrangian multiplier, and

(2)

’ 0 = ao + (1—0.)0“) , {u) = u('n -uU) 7]

(2) &5 S

+ - s - :
g(xo) and g - g(xol. ¢ standing for either o©

where at Xov 8
or u in (37), and o is a weighting parameter. The first variation of

J is then

i 1
83, = [ { [Dc %5]50* + [%%-+ pmzu]éu* . c.c.} dx

X

AFG s (3) - [o ¢ %)-Ac’i‘l“] s (1)
[ - e eDfa el

- {(0) su* - (u) Sor 0c.c.}

x=tb/2




& = fl-ainkt? & apll? (39)

The vanishing of ’GJI for arbitrary variation of the indicated quantities
then Quarantees the satisfaction of the field equation, the quasi-periodicity
conditions, and the continuity of the displacement and the stress across the
two materials within the cell.

Hence, by choosing the appropriate test functions u and o, in the
form of Fourier series for this case, one is able to calculate the frequency
and so the Fourier coefficients from Jl’ (36), by putting SJl = 0. For
this case, numerical results obtained by Nemat-Nasser showed an extremely

rapid convergency to the exact results.

1.6 Lattice-type Models

{

In a fiber-reinforced composite the fibers act as wave guides for a
wave propagating in the direction of the fibers. For a wave propagating
normal to the direction, the fibers undergo little deformation and essentially
act as obstacles interacting with each other and with the surrounding medium
in a manner which is similar to the behavior of mass particles in a lattice
system. These observations have motivated kinematical assumptions regarding
the deformations of the reinforcing elements and of the matrix material which
are analogous to those used by the phycists in wave guides and lattice models
respectively. Thus, the fibers are considered as long and slender structural
elements and the matrix is replaced by a system of springs. A three-dimen-
sional theory of this type was first worked out by Turhan [T15]. A lattice
model simulating a periodic structure of laminated plates which are
formed by a redistribution of masses and stiffnesses of fibers was first

presented by Drumheller and Sutherland [D10]. Related works will be reviewed

later on.




1.7 Micromorphic Theory of Continua

A theory of micromorphic continua has been developed by Eringen, et al.

(E2,Tl6], and Habip {HI] in a series of papers. The theory is intended for
the prediction of thermodynamic behavior of granular solids, anisotropic and f
polymeric fluids and, in particular, composite materials. In this theory the
mechanical fields are considered as distributions. Partial differential i
equations governing the moments of fields up to any order have been derived.

In this theory, a smoothing operation is also employed in which sums over

individual constituents are approximated by integrations over the entire
material volume. This theory is, in effect, a non-classical mixture theory.
As with the general mixture theories, the general forms for interactions
and constitutive relations are postulated. However, the unknown functions

and/or constants involved must be determined from experiments.

1.8 The Neighborhood Concept

A neighborhood concept related to the differential-geometric method in
the continuum theory of dislocation has been proposed by Ben-Amoz [B21]. In
this theory, one avoids the difficulties associated with discontinuous
material properties by utilizing a neighborhood averaging ;echnique. Unfor-
tunately, the relations between the displacements of the constituents and
the corresponding neighborhood averages must be postulated and/or deduced

from experiments. So far this technique has not been further developed.

1.9 Theory of Elasticity with Microstructure

In the continuum models aforementioned the media dealt with all

possess a periodic microstructure such as media with equally spaced tibers

or periodic laminae. The treatment in such cases is greatly facilitated




by the existing periodicity which enables the derivation of continuum

theories based on an analysis of the micromotion‘in a unit cell. While ?
substantial progress has been made with media possessing a periodic micro-

structure, little progress has been made with media lacking periodicity,

such as inclusions of arbitrary geometry embedded in a matrix material.

For media lacking periodicity, the theory of elasticity with microstructure

developed by Mindlin [M4] is certainly an effective tool provided the matrix

1s an isotropic elastic material. In this theory, a set of equations for

the macro-motion that contain in some measure the effects of the micro-

motion has been deduced. Recently, Ben-Amoz [B30] has extended the theory

of elasticity with microstructure to a heterogencous medium consisting of

inclusions of arbitrary geometry embedded in a matrix material. His treat-
ment is structured along the lines of Mindlin's theory although there are
important ditferences. The crucial difference is that the arbitrary
material constants in Mindlin's theory are deduced here in terms of known
constituent properties. Specifically, two pairs of characteristic constants
are identified: both length and time scales associated with dilatati;nal
and shear waves. In the following, the dynamic theory for composite
materials of Ben-Amoz is outlined briefly. For wave propagation in a
heterogeneous medium consisting of inclusions of arbitrary geometry em-
bedded in a matrix material, Ben-Amoz has obtained the displacement

equations of motion as
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In the foregoing, D \{ and Gf represent the inclusion density and
moduli whereas Py \m' Um represent the corresponding matrix properties;

vf and , denote the volume fractions of inclusion and matrix in a unit

cell, respectively. The integral 1{ taken over the inclusion volume V!
in a representative volume V is the polar moment of inertia of the
inclusions about the center of the representative volume and thus the
eftfect of inclusion distribution is contained in this integral which enters

into the material constants «, 8, Y. From (40), Ben-Amo:z has extracted

the tollowing two syvstems tor rotational and dilatational modes:
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The systems of equations are valid up to wavelengths of che order of a unit
cell dimension and are found to reduce under special assumptions to Mindlin's
equations in the long wave approximation. For a harmonic plane wave propa-
gating in thévﬁedium, the dispersion curves for a cubic array of spherical
particles obtained by this theory are rather similar to the curves sketched

in [Md] for the lowest acoustic modes.

1.10 Viscoelastic Analogies

A model for the prediction of the dispersive effects in layered composite
materials based upon a viscoelastic analogy has been proposed by Barker
[Bo]. The model consists of a particular stress relaxing equation of state
of the Maxwell type. The parameters involved are defined in terms of the
properties of the constituent materials and geometry of the layered com-
posite. The technique, which is semi-empirical, predicts almost exactly
the average stress in a unit cell of the laminate. In effect, the model
smoothes out the detailed behavior arising from reverberations in the

layers of the composite.

1.11 Discrete Continuum Theory

A discrete continuum theory for periodically layered composite matevials
has been proposed by Chao and Lee [C3]. The treatment is mor; or }e<s along
the line of Achenbach, et al. [A9] but without using the smoothing process.
In this theory, the displacement field for each layer is obtained by dcvoiOp-
ing a two-term truncated Taylor series. The governing equations which
incorporate interface continuity conditions are derived in the form of a
system of diftferential-diftference equations. Application is made to propa-

gation of plane harmontc waves in an unbounded layered medium.  Thickness
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twist vibrations are studied. Numerical results predicted by this theory

agree quite closely with the exact results. In general, agreements are i

even better than effective stiffness theory, as wave number gradually

increases. |

: 1.12 Statistical Approach

McCoy [M2], Bose and Mal [B41,B42] have proposed a statistical approach
% for longitudinal waves of both compressional and shear types in a fiber
veinforced composite where fibers are randomly distributed but of identical
properties. In this theory, the composite is considered to be statistically

uniform. The phase velocity and damping of the average waves are obtained

by a statistical consideration as functions of the statistical and the
mechanical parameters. Correlations in the positions of the tibers is intro-
duced. The theory leads to Hashin and Rosen's formulas [Ho] for bulk

modulus and shear modulus if the correlations are ignored. The correlation
terms have a significant effect on the damping property of the composite,
especially at high frequencies and concentrations. The effect is to increase
the velocity and decrease the specific damping capacity. Ziegler's [Z1)

mean wave technique for laminated random media and Krumhansl's |K9] average

Fourier-Floquet method for disordered composites are similar to this approach.

I.15 Hydrodynamic Concept
Lo —ae ol St -~

In a series of papers, Tsou and Chou [T13,T14], Torvik |[T11], Chou and

Wang [C6], Munson and Schuler [M13] developed a theory based on the flow

across a selected control volume of the medium  to predict the Huponiot curve

of a shock moving in the fiber-reinforced and taminated composites. They

derived individual mass, momentum and energy conservation equations. By this
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théory, they were able to determine not only the average Hugoniot, but also
the integral of the interface shear stress over the width of the shock. 1In
some cases, they obtained good comparisons between theoretical and experi-
mental results on a variety of composite geometries. This hydrodynamic
approach seems to be a useful tool for determining the range of response
that may be expected under compressive shock loading. Related works will
be discussed later.

We have thus summarized most of the published theories in this chapter.
We‘will review published work which used these theories to study harmonic and

transient waves in composites in the following two chapters.




I1. HARMONIC WAVES

The work on harmonic or sinusoidal wave propagation in composites con-
sists of waveguide analyses, in which the geometrical cross section of the
composite does not vary in the propagation direction, and wave-reflect
analyses, in which the material properties vary periodically in the direction
of propagation. In the waveguide case, for wave propagating in the z

direction, a typical response tunction f  is expressed as

F(x;¥:2:8) = Flx,y) exp i(kz -wt) (44)
and in the wave-reflect case as
fF(x,y,z,t) = F(x,y,z) exp i(kz - wt) (45)

where F is the mode shape, X, y and =z are the coordinates, Kk is the
wave number, w the frequency, and t is time. In case of wave-reflect
type propagation, F has the same periodicity as the geometry in the =
direction. The dispersion of the waves is expressed in terms of the rela-
tionship between any two of the quantities ¢, ® or &, where ¢ =w/K is
the phase velocity. For wave-reflect case, ® is periodic in Kk with
period 2n/a, where a is the length of the unit cell in the propagation
direction. These two types of analyses of harmonic waves in composites,

based on various methods, are discussed as follows.

IT.1 Exact Theories

The initial study of harmonic or sinusoidal waves in laminates was
made by Rytov [R13]. By use of elasticity theory, he obtained the exact
solutions for the case of dilatational waves propagating normal to the
laminates (wave reflection problem) and the case of symmetric waves

propagating parallel to the layvers (waveguide problem). He presented the




phase velocity spectrum for cach case. The zero frequency limit of the

primary mode, which corresponds to the static elastic solution, was also
obtained. Rytov's exact solution is widely used as a basis for estimating
the accuracy ot the theories of continuum for composites,

Sun, Achenbach and Herrmann [S20], and Achenbach [All] discussed the
time-harmonic waves in  layered composite materials propagating in the
direction of the lavering. They considered a medium of alternating lavers
of two ditterent homogencous materials. Using the solutions of the equa
tions of elasticity representing plane time-harmonic waves, they derived
exact dispersion reiations tor both cases of svimetric deformations and
antisvimetric detormations.  The results obtained show that tor the high
values of the ratio of the shear moduli, or the lavering stiffness, the dis-
persion curves depart sharply trom the limiting phase velocities for "long
waves' at very small wave numbers.  Thus, they concluded that the applicability
of the eftective modulus theory tor wave propagation in practical laminates
1s very limited since it cannot account tor dispersion.

Puppo, Fenp and Hacner {I'7] analveed sinusotdal wave propagation
parallel to fiber direction in a unidirectional tiber-reintforced composite.
They modeled the hexagonal arrvay of cirvcular tibers in a matrix by a
circular tiber with concentric cvlinder of matrix. They then solved the
concentric rod problem by the method of clasticity. 1t appears from theirv
numerical results that the calculation of the parameter o, which is the
coeftficient of the second term in the expression ot the phase velocity in
terms of wave number was somewhat questionable,

Hottuar, ot al. (N7 also did the analvsis of the concentric rod,
whaeh mode s the hexagonal aveay o corcular tibers an o matvey matevial,

and compared 1t with the results for the equivalent Laminate for plass epony
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constituents. A very similar qualitative nature may be seen but the parameter
a  for the two geometries is unequal.

Reuter [R7] studied the dispersion of flexural waves in circular
bimaterial cylinders. He obtained the general torm for displacements and
the frequency equation for the first mode of flexural wave propagation in
an infinitely long circular bimaterial cylinder. The theory follows the
technique developed by Pochhammer and Chree for elastic bars which is well
known in the theory of elasticity. They presented several first-branch
dispersion curves ftor the first flexural mode for various ratios of the
constituent cylinder radii. Dispersion characteristics significantly
different from those predicted by the theory tfor homogeneous cylinders are
realized.

Lai, Dowell and Tauchert [L1] also provided a thorough treatment of
propagation ot harmonic waves in a composite elastic cylinder. They showed
vigorously how special conditions corresponding to particular combination
of material properties can be derived trom the general solution. The
problem treated in detail pertains to a composite circular elastic rod of
infinite length consisting of two layers. The central portion is solid
while the outer portion is a cylindrical shell. Their numerical results,
in terms of frequency and real wave number, were given for a composite rod
of a soft core with a stiff casing. The results were checked with the
asymptotic frequency equations at short wavelength. The exploration of
the dispersive phenomena and the development of various simplified theories

for harmonic waves in a composite rod can be based on the results of this

investigation,




Rade, ¢t al. [B2] considered the Bloch-type wave propagation in a
three dimensionally fiber-reintforced composite of orthogonal tvpe. The
tibers tn the direction of propagation (the z-direction) were assumed as
a round fiber surrounded by a circular sheath consisting of material for
which the properties were obtained by homogenizing the resin matrix and the
lateral tibers running in the two directions orthogonal to propagation.
they pertformed the Bloch analysis by expanding the displacements in a
three-dimenstonal Fourier series and derviving an intinite-order matrix tor
the coetticrents of the Fourier series.  The determinant of this matrix
provides the dispersion relation for the sinusoidal waves. The intfinite
matrix was solved in two wayvs: (1) a perturbation technique and (2) a
truncation technique in which only a tfinite number of terms in cach of the
series was used. It owas found that the lavering in the direction of propagation
nas little effect on the dispersion.  Calculations using only three terans
tn the Fourier series in the lateral directions and just the zevoth
(averaging) term in the propagation divection were carrvied out for both
isotropic and orthotropic fiber-bundle properties. The isotropic results
agree well with the known axisyvmmetric waveguide solution while the
orthotropic properties give much better agreement with experiment.

Sve |S42] carried out an exact analysis of time-harmonic waves
traveling obliguely in a periodically laminated medium. The analyvsis was
based on two-dimensional equations of elasticity and Bloch theory. Dis-
persion relation was obtained for harmonic waves propagating in an arbitrary
direction, Limiting phase velocities were presented for infinite wavelength
for any angle of propagation in the torm of a tourth-order determinant. In
case of propapation along or across the lavers, this determinant reduces to

two determnant s of second order that vield the imiting phase velocities




directly. His numerical results indicate clearly the dependence of dis-
persion upon the angle of propagation.

Sve [S43] also investigated thermoelastic waves in a pertodically
laminated medium. By an exact analysis, he studied the eftect of thermo-
elastic coupling on sinusoidal waves propagating in the directions parallel,
perpendicular and oblique to the planes of laminates. The effect of
thermoelasticity is to cause complex propagation constants to occur except
in the case of shear wave perpendicular to laminates in which the response
1s unattected. His numerical results indicate that thermoelastic attenuation
ts confined primarily to the quasi-longitudinal modes. The phase velocities
and mode shapes are also influenced by the attenuation parameters, especially

tor large frequencies.

Christensen [CY] presented an analytical formulation of the effective
attenuation of harmonic waves, of low frequency, through layered elastic
medium. The effective attenuation is defined as the difference in trans-
mitted energy to initial total energy. This energy is accounted for through
secondary wave scattering ettects resulting in pulse dispersion. When the
layvers have equal impedance and equal stiftness, pulse attenuation vanishes.
As a result of the analysis, an explicit expression for attenuation was
derived by a perturbation technique. The theory presents a useful analytical

result in wave propagation in laminated composites.

Lee and Yang [L4], and Lee [L3] analyzed the harmonic waves in composite

materials with periodic structure of elastic constants and density variation.

They employed Bloch or Floguet theory and treated the propagation in terms

of Floquet waves. The theory was presented for a laminated composite material

and propagation normal to the lamination. They found that the frequency

spectrum has a banded structure, comprising pass or propagating bands and




stop bands. 1t was shown that the frequencies at the boundaries of the
bands correspond to wave profiles which are normal modes of vibration of the
individual cells with fixed or tree surfaces. Both types occur at each
limiting frequency. They also interpreted properties of Floquet waves in
terms of normal mode theory and interpreted the high trequency limit for
Floquet waves in terms of geometrical optics type analysis. ‘4
Schoenberyg [S1] considered plane sinusoidal waves propagating through
a medium made up of plane lavers of anisotropic homogeneous linearly elastic
material. Using a matrix formulation, he found the stresses and displace-
ments in terms ot the boundary conditions on one boundary, =0, e
calculated the generalized transter tunction ﬁ explicitly. The transfer
tunction R can be thought ot as a transfer function between the solutions
gt a0 and 2 S where n is the laver number. li is & function of
trequency  w  and the material parameters in cach of the n  lavers. In
the special case of normal incidence, he tound that the eigenvalues are

solutions to a bicubic equation instead of a sextic equation.

Sutherland |S39] analytically predicted phase velocity and attenuation i

[%

tor two specific composites using the time-temperature superposition principle }
\ e

to vield the viscoclastic portion of the total dispersion spectrum.  The i
7

two composites, he considered, ave quartz cloth embedded in a phenolic matrin i
8

and stainless steel reintorced epoxy. He speculated that the difference b
?:

between the total spectrum and the viscoelastic portion is then ascribed to ]
4

the effects of internal geometry. He determined the total spectrum experi-
mentally but not analvtically. The results ave applicable to harmonic waves

traveling perpendicular to the tiber dirvection once the corresponding total

spectrum has been determined.
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Kaul and Herrmann [K1] considered free vibration of an elastic cylinder
with laminated periodic structure. The circular cylinder considered has a i
periodic variation of elastic constants and density normal to the axis of
the cylinder. They then developed the theory of torsional vibrations of !
| such a cylinder in terms of Floquet or Bloch waves which are quasi-periodic

waves and whose amplitude profile has the same periodicity as that of the

material and repeats with the periodicity of the cell. Using Floquet's ]

theory, they obtained the dispersion spectrum for time-harmonic waves propa-

E gating in such a periodically laminated cylinder. It was shown that the
dispersion spectrum has a band structure, consisting of passing bands and
stopping bands. Motion in the case of grazing incidence, and motion at the
end of the zones were discussed. [t was also shown that as the radius of the
cylinder tends to infinity, the torsional waves in a circular cylinder

degenerate to SH-waves in laminated plates.

[1.2 Variational Approaches

Kohn, Krumhansl and Lee [KS] employed variational methods based on the
Floquet or Bloch theory to study the propagation of harmonic elastic waves
through composite materials of periodic structure. In these wethods, varia-

i tional principles were developed in the form of integrals over a single cell

of the composite. The variational principles provided a means of determining
phase velocities and stress distributions in Floquet waves traveling through
the composite unchanged in form from cell to cell. Strain energy principle
was used and possible jump conditions were discussed. The Rayleigh-Rit:
procedure was applied to the solution of the variational equation to calculate

dispersion relations, the phase velocities and stress profiles. The one-

dimensionally periodic syvstem was evaluated and compared with the exact




solution. The results show that this approach, by using smooth displacement

test functions, provides a satisfactory determination of natural frequencies ﬁ
B
"

and phase velocities, but is inadequate for stress profile. In principle, |
|

this method can be used to study time-harmonic waves propagating in composites
withrather general structuring as long as the composites are periodic from
cell to cell.

Bevilacqua, Krumhansl and Lee [B35] made a generalization of the
previous work based on strain energy consideration. The Ravleigh-Ritz

procedure was adopted in which the displacement tields were expressed by

complex Fourier series in filament and by simple Fourier series in matrix.
Consequently, they obtained stress profiles more accurately than those
when the whole displacement field was expressed by simple Fourier series
in the previous work.

Bevilacqua and Lee [B3o] utilized different polynomial repre-
sentations in filament and matrix for a simple model composite problem
comprising a slab of each material with fixed boundary conditions. This
simple model provided the same difficulty of a discontinuity in strain at
interface, but provided a simpler case for assessing various approaches. Tt
was pointed out that Fourier series representation is less convenient in
two-dimensional and three-dimensional cases when the polynomial form may
prove to be superior.

Tobon [T10] also made an analysis of propagation of eclastic waves in
composite materials by variational methods. He carried out a minimum
strain enecrgy calculation using a Fourier series expression for the displace-
ment field. o the one-dimensional case, this method of evaluation is unsatis-

tactory tor stress protiles as shown in [RS5]. 1t scoms that successtul two-

Jimensional and three-dimensional caleculations by this method is tfeasible

1t discontinuities are permitted in strain energy calculations,




Bevilacqua and Lee [B37] presented another variational statement based
on complementary energy consideration so that the variational integral is
expressed in terms of stress. Starting with a continuous displacement
variation in Fourier series form, they first determined the corresponding
stress variation by integrating the equation of motion. Then inserting
this result into the variation integral, they obtained a matrix eigenvalue
problem to determine the values of fundamental frequency. The corresponding
stress profile obtained exhibits the correct form of stress-gradient
discontinuity at the interfaces, and provides an accurate approximation.
However, the frequency is less accurately predicted than by their improved

strain energy approach [B35].

Variational methods were also explored by Wheeler and Mura [WI0], and
wu [W17]. Instead of using the procedure of Rayleigh-Ritz, Wu emploved,
however, the Galerkin procedure.

In a series of papers [N12-10], Nemat-Nasser applied more general
variational principles to the Floquet wave problem than those considered by
Kohn, Lee, et al. Based on Hellinger-Reissner variational method, he
developed general variational principles in which the displacements, the
stresses and the strains in one case, and the displacements and the stresses
in another case, are given independent variations, and which include
appropriate general boundary and discontinuity conditions. From the gen<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>